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With the introduction of an energy-conserving dissipative particle dynamics (DPD)
scheme, simulations of the thermal behaviour of complex fluids at hydrodynamic time
scales became possible. In this paper it is demonstrated that a different equation of
state allows us to perform simulations of the phase change of materials. We indicate
that thermal simulations with a constant temperature boundary condition are only
possible in an accurate way at high overlapping coefficients, if a newly developed
consistent boundary condition is used.c© 2000 Academic Press
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1. INTRODUCTION

Dissipative particle dynamics has been introduced [1] as a method to simulate complex
fluids. The idea is to simulate the motions of a collective of molecules (called fluid parti-
cles) rather than separate ones, which is common in molecular dynamics. The interaction
between the particles is not only through a conservative force but also by a drag and a ran-
dom force, springing from Brownian dynamics. With this choice of forces, this simulation
method acts in the mesoscopic regime, and the hydrodynamic behaviour of complex fluids
can be modelled. It can solve a variety of systems, ranging from suspensions [2] to dilute
polymer solutions [3]. Also, phase separation has been studied using standard DPD [4], or
a combination of DPD and advanced Monte Carlo techniques [5]. Besides these applica-
tions, theoretical progress has been made also. Espa˜nol and Warren [6] derived the proper
relationship between the interacting forces. Subsequently Espa˜nol [7] and Marshet al. [8]
proved the true hydrodynamic behaviour of DPD.

The original method [1] could only simulate isothermal systems and consequently was
not able to simulate heat transfer problems. Avalos and Mackie [9] and Espa˜nol [10] solved
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this simultaneously by introducing an internal energy variable and a temperature for every
particle. In this paper we have extended this model to allow for a phase change within the
DPD simulation. In the next sections the model will be introduced together with a new,
consistent boundary condition. Finally, the results of the phase change DPD scheme are
presented.

2. THEORY

In this section the theory of energy-conserving dissipative particle dynamics will be
explained. Subsequently, the necessary conditions to simulate a phase change will be pre-
sented.

2.1. Energy-Conserving DPD

Dissipative particle dynamics is a simulation technique for simulating complex fluids
at hydrodynamic time scales. The DPD scheme consists of the calculation of the position
and momenta of interacting (fluid) particles over time. The energy-conserving form also
introduces an internal energy and a temperature for every particle.

The equations of motion for these particles with positionsr i (t) and momentapi (t) are
given by

dr i = vi dt
(1)

dvi =
∑
j 6=i

[
ai j

(
1− ri j

rc

)
r̂ i j − γi j ωD(ri j )(r̂ i j · vi j )r̂ i j

]
dt + σi j ωR(ri j )θ

V
i j r̂ i j ,

whereai j is the maximum repulsion between particlesi and j , r i j = r i − r j , ri j = |r i j |, r̂ i j =
r i j /|r i j |, andrc is the cutoff radius. The second and third parts result from the dissipative
and random interactions, withvi j = vi − v j , ω(ri j ) as a weight function, which tends to
zero forr→ rc, andθV

i j is a random number with zero mean anddt variance.
In the original DPD algorithm the friction coefficientγi j and the noise amplitudeσi j

were assumed to be identical for all particles, and these parameters were related to the
temperature through a fluctuation–dissipation theoremσ 2= 2kBTγ [6]. Since in energy-
conserving DPD every particle may have a different temperature, Espa˜nol [10] suggests
keeping the noise amplitude constant for all particles and determining the friction constant
from the fluctuating temperatures,

γi j = σ 2

4

[
1

Ti
+ 1

Tj

]
, (2)

whereTi is the temperature of particlei . Then the evolution of the internal energyεi is
given by

dεi = 1

2

[∑
j

[
ωD(ri j )γi j (vi j · r̂ i j )

2− σ 2
i j ω

2
R(ri j )

]
dt −

∑
j

σi j ωR(ri j )(vi j · r̂ i j )θ
V
i j

]

+
∑

j

κi j

(
1

Ti
− 1

Tj

)
ωTD(ri j ) dt +

∑
j

αi j ωTR(ri j )θ
T
i j . (3)
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The upper part of this equation is related to viscous heating of the particles, while the lower
part is related to the conduction of heat. Here,κi j represents a thermal conductivity that
depends on the internal energy of particlesi and j and follows from [10]

κi j = κ̃

λ2

Ti + Tj

2

εi + ε j

2
. (4)

Here,λ is the average distance between particles and ˜κ is the thermal conductivity.
Finally, the detailed balance condition requires thatαi j = 2κ2

i j and the relationship be-
tween the weight functions [6]

ω2
R(ri j ) = ωD(ri j )

(5)
ω2

TR(ri j ) = ωTD(ri j )

with kB the Boltzmann constant.

2.2. Phase-Change DPD

In the previous section the energy-conserving DPD model was described, which until
now has been used for one-phase calculations only. In this case it may be assumed that
the material has a constant heat capacity, independent of the internal energy. Espa˜nol [10]
suggests the equation of state

T(ε) = ε

Cv

(6)

with Cv as the heat capacity of the substance to be simulated.
In the case of a material that changes phase, three stages can be defined. First, the material

is solid (with a solid heat capacity), then the solid will melt, and finally the material is
completely liquid (with a liquid heat capacity). This leads to the equation of state

T(ε) =


ε

Cv,s
ε < Tm · Cv,s

Tm Tm · Cv,s ≤ ε ≤ Tm · Cv,s+ L
ε− L
Cv,l

ε > Tm · Cv,s+ L ,

(7)

whereCv,s andCv,l are the solid and liquid heat capacities,Tm is the melting temperature,
andL is the enthalpy of fusion. This equation of state is similar to the enthalpy method [11]
commonly used in phase-change problems.

To investigate whether this equation of state, together with the energy-conserving DPD
model presented in the previous section, will properly simulate the phase change of a
material, the model will be tested against an analytical solution of a well-known problem
[12]. Generally, these problems are fairly simple and consider a one-dimensional phase
change by heat conduction only. This implies that only the last two terms of Eq. (3),
describing the evolution of energy, will be employed. Physically this means that particles
are on fixed positions during the simulation.

3. SIMULATIONS

In this section results of the simulation of phase-change DPD will be shown. First, the
mapping of the thermal conductivity emerging from the energy-conserving DPD model is
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shown, and a novel boundary condition method is explained. Finally, the simulation results
of the phase-change DPD model are compared with the results calculated with the analytical
solution.

3.1. Mapping the Thermal Conductivity

An important aspect of applying DPD to realistic science problems is the mapping of the
DPD parameters on physical parameters. As explained before, one of the parameters in the
energy-conserving DPD model is the thermal conductivity ˜κ. In the article of Ripollet al.
[13] this parameter is mapped in the following way: a simulation is performed until a steady-
state profile is reached between two thermal baths. Subsequently the heat flux is calculated
for different thermal gradients. From a plot of the heat flux versus the imposed thermal
gradient, the slope, representing the thermal diffusivity, is determined. Unfortunately, many
simulations have to be performed to determine the thermal diffusivity. Furthermore, our
aim for energy-conserving DPD is to perform time-dependent DPD simulations, which
by definition a phase-change problem is. It is not demonstrated that this is possible in an
accurate way, if the thermal diffusivity is determined from a steady-state solution.

In this paper, the thermal diffusivity is determined from (in principle) a single simulation.
We choose the following system: suppose a solid body occupying the space fromx= 0 to
x=∞ is initially at temperatureT0. At time t = 0, the temperature atx= 0 is raised toT1

and kept at this temperature. Heat will penetrate the solid body by conduction only. The
differential equation governing this one-dimensional problem is

∂T

∂t
= a

∂2T

∂x2
(8)

with a as the thermal diffusivity of the solid. The solution of this problem (see, for instance,
[14]) is

T − T0

T1− T0
= 1− 2√

π

∫ x/
√

4at

0
exp(−η2) dη = 1− erf

(
x√
4at

)
= erfc

(
x√
4at

)
. (9)

The thermal diffusivity can now be found instantly from a single energy-conserving DPD
simulation by fitting this formula onto a simulated temperature profile, at a certain time.

3.1.1. Standard boundary condition.The analytical solution given in the previous sec-
tion is strictly valid only for an infinite system, but for short times it represents finite systems
well. The simulations of Eq. (3) with the equation of state of a solid (Eq. (6)) are performed
on a system with length 10× 5× 5, containing 1250 particles. The boundary conditions
are imposed, as suggested by Ripollet al. [13], through an extra layer (sizerc= 1.0) of
particles in which the particles are kept at a constant temperature. After the simulation of a
certain timet with a given thermal conductivity ˜κ, the results are used to perform a nonlinear
least-square fit (using the Levensberg–Marquardt method), to find the thermal diffusivitya
as used in Eq. (9).

In Fig. 1 results of these simulations are depicted for two simulation times. The tempera-
tures are determined by averaging over bins that divide thex-axis. It is clear from this figure
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FIG. 1. Average temperature of the particles in the 40 bins dividing thex-axis. The error bars are determined
by repeating the simulation five times. Two simulation times (solid linet1= 10 and dashed linet2= 40) are plotted.
The close-up shows the nonaveraged temperature of every particle close to the wall.

that the boundary condition atx= 0 is not reproduced correctly. Instead of staying at the
desired temperature (T = 2.0), it starts with a 10% difference (of the imposed temperature
gradient), moving to the true value as time progresses, but never reaching it completely.
This behaviour was never observed by Ripollet al.since their work focused on low overlap-
ping coefficientss= rc/λ. The temperature slip can be explained as follows. Consider the
system after it has reached steady state at the correct boundary value. In this situation the
heat flowing to a particle equals that flowing from a particle. In the middle of the simulation
box this condition is satisfied since the temperature profile is a straight line. Focusing on
the particles close to the boundary, a straight temperature profile is now only possible at
low overlapping coefficients. At higher overlapping coefficients (and thus many particles
in the boundary), the temperature profile has a slope within the simulation box but is flat
inside the boundary. Thus, a particle near the boundary loses a lot of energy to the particles
toward the middle of the simulation box, while hardly gaining energy from the boundary.
Therefore the steady-state temperature of the particles near the boundary is lower than
intended.

3.1.2. Consistent boundary condition.It is clear that the implementation of boundary
conditions, as used until now, does not impose the desired constant temperature correctly.
The explanation of the incorrect implementation of the boundary condition given above
immediately leads to the solution of the problem. Obviously, the particles near the boundary
should still be subject to a heat flow from the boundary even when they have reached the
boundary temperature. This is achieved by copying all the particles within a distancerc

from the boundary into the extra layer. They are given the samey, z-position, and their
x-position is mirrored with respect to thex-position of the boundary. The temperature of
the particles is changed in such a way that the average temperature of the original and the
mirrored particle is equal to the desired boundary temperature. In this caseT = 2 atx= 0
andT = 1 atx= L.
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FIG. 2. Average temperature of the particles in the 40 bins that divide thex-axis using the consistent boundary
condition. The error bars are determined by repeating the simulation five times. Two simulation times (solid line
t1= 10 and dashed linet2= 40) are plotted. The close-up shows the nonaveraged temperature of every particle
close to the wall.

In Fig. 2 simulation results are shown after the implementation of the new boundary
condition. The resulting boundary temperature is reproduced correctly this time. The small
price to pay lies in the stronger fluctuations at some distance from the boundary as compared
to the original boundary condition. This is caused by the mirroring of the particles, leading to
an increase of the density fluctuations near the boundary. These higher density fluctuations
give rise to larger fluctuations in the temperature at some distance from the boundary.
However, at the boundary the temperature fluctuations are smaller than with the previous
method.

3.1.3. Results from time-dependent fit.The time-dependent heat transfer problem de-
scribed by Eq. (9) can be correctly simulated with the consistent boundary condition.
From these results it is possible to determine the thermal conductivitya. The following
graph is constructed to prove the possibility of determining the thermal conductivity as
described before. A simulation is performed on a system with length 40× 5× 5, contain-
ing 10,000 particles. At a few time intervals the temperature profile is plotted. With the
temperature profile of the first time interval, the thermal conductivitya is determined.
This value ofa is used to predict the temperature profile at the other two time intervals.
As can be seen from Fig. 3, the agreement between the simulations and the predicted
temperature profile is good. Notice that in this case only a single temperature profile has
been used to determine the thermal conductivity. But to get some insight in the accu-
racy of this value, it can be determined from temperature profiles at different simulation
times.

A kinetic-theory-based prediction (Ripollet al. [13]) is given for the dependence of the
thermal diffusivity on the overlapping coefficient and the thermal diffusivity ˜κ:

a = s2

24
κ̃ . (10)
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FIG. 3. Average temperature of the particles in the bins that divide thex-axis. The symbols represent the
simulation results, and the lines give the prediction based on the fit performed on the first temperature profile.
Three simulation times (125, 250, and 450) are plotted.

Using the thermal bath approach, Ripollet al.found that the thermal diffusivity approximates
the theoretical prediction for highers-values, but never reaches it completely. Therefore,
with the novel boundary condition several simulations have been performed at different
overlapping coefficients. In Fig. 4 the results from these calculations have been plotted, as
well as the theoretical prediction and the original data of Ripollet al. [13].

It can be seen that the theoretical and simulation results agree for sufficiently high values
of the overlapping coefficient.

FIG. 4. Thermal diffusivity for different values of the overlapping coefficient with the consistent boundary
conditions (closed symbols) and the original data from Ripollet al.[13] (open symbols). The kinetic-theory-based
prediction is also shown (solid line).
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3.2. Phase-Change DPD

In this section the phase-change DPD scheme, as developed in Section 2.2, will be tested.

3.2.1. Description of analytical model.Freezing and melting have been described by
Stefan [15] in the context of polar ice thickness prediction. Neumann [12] extended the
mathematical description of the Stefan problem to the following test case. Suppose a solid
body, occupying the space fromx= 0 tox=∞, is initially at temperatureT0, lower than the
melting temperatureTm of the substance. At timet = 0, the temperature atx= 0 is raised to
T1, aboveTm, and kept at this temperature. A melting frontX with temperatureTm will move
into the solid. To describe mathematically the temperature evolution, two heat-conduction
equations similar to Eq. (8) are required, one for the liquid region, occupying space between
x= 0 andx= X(t), and one in the solid regionx> X(t). Solving these equations requires
an additional boundary condition,

ks
∂T

∂x
= kl

∂T

∂x
+ Lρ

d X

dt
(11)

with ks andkl as the thermal conductivity of the solid and liquid, respectively (assumed
to be equal in this case),ρ as the density, andL as the enthalpy of fusion. This boundary
condition states that the melting rate is equal to the difference of heat flow towards and
from the melting front. The solution of this problem is expressed in terms of the moving
interface position,

X(t) = 2ξ
√

al t, (12)

the temperature in the liquid phase,

T − T1

T1− Tm
= 1− erf(x/

√
4al t)

erf(ξ)
, (13)

and the temperature in the solid phase,

T − T0

Tm− T0
= 1− erfc(x/

√
4ast)

erfc(ξ
√
(al/as))

. (14)

Theξ in these equations is the root of

Cv,l(T1− Tm)

exp(ξ2) erf(ξ)
− Cv,s

√
as√

al exp(ξ2(al/as) erfc(ξ
√

al/as)
= Lξ

√
π. (15)

In the next section, the results from phase-change DPD simulations will be compared
with the results from these analytical solutions.

3.2.2. Results. For short times, the analytical solutions given in the previous section
can be compared to simulations performed in a finite system. The simulations of Eq. (3)
with the equation of state incorporating phase change (Eq. (7)) are performed on a system
with length 40× 5× 5, containing 10,000 particles. The enthalpy of fusionL = 5,Cv = 5,
andTm= 1.5.
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FIG. 5. Average temperature of the particles in the bins that divide thex-axis. The symbols represent the
simulations, and the solid lines are the analytical results. Three simulation times (50, 200, and 500) are plotted.

In Fig. 5 results of these simulations are depicted for three simulation times. One ob-
serves good agreement between the simulations and the analytical results. At the melting
temperature (Tm= 1.5) a discontinuity in the temperature profile is observed. This is caused
by the removal of heat that is used for melting the material, in accordance with Eq. (11).
Notice that these simulations did not require any fitting. The thermal conductivity has been
determined from the one-phase simulations. The position of the melting front is determined
by monitoring thex-position of the melting temperature in time. In Fig. 6 this is shown
together with the analytical solution. Again the agreement is very good.

From these two graphs it can be concluded that the described extension to the original
energy-conserving DPD scheme allows us to successfully perform phase-change calcula-
tions.

FIG. 6. Evolution of the melting front in time. The symbols represent the simulations while the solid line
represents the analytical solution.
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4. CONCLUDING REMARKS

We investigated the possibility of simulating phase change with DPD. To achieve this, an
extension to the original energy-conserving DPD has been proposed. In order to properly
account for the different phases involved, i.e., solid, liquid, and melting states, the equation
of state has been divided into three parts. Concerning our objective to perform accurate
time-dependent calculations, it was found that the commonly used implementation of a
constant temperature boundary condition can yield incorrect results at high overlapping co-
efficients. In this paper a new consistent boundary condition has been introduced and applied
successfully for all overlapping coefficients. In conventional DPD simulations the problem
of wall-slip was first noticed by Revengaet al. [16]. Our new approach to implementing
boundary conditions can also solve this problem [17].
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